116 research outputs found

    Creating photon-number squeezed strong microwave fields by a Cooper-pair injection laser

    Full text link
    The use of artificial atoms as an active lasing medium opens a way to construct novel sources of nonclassical radiation. An example is the creation of photon-number squeezed light. Here we present a design of a laser consisting of multiple Cooper-pair transistors coupled to a microwave resonator. Over a broad range of experimentally realizable parameters, this laser creates photon-number squeezed microwave radiation, characterized by a Fano factor F≪1F \ll 1, at a very high resonator photon number. We investigate the impact of gate-charge disorder in a Cooper-pair transistor and show that the system can create squeezed strong microwave fields even in the presence of maximum disorder.Comment: extended and revised version, equivalent to the published article. 11 pages, 3 figure

    Non-Markovian correlation functions for open quantum systems

    Get PDF
    Beyond the conventional quantum regression theorem, a general formula for non-Markovian correlation functions of arbitrary system operators both in the time- and frequency-domain is given. We approach the problem by transforming the conventional time-nonlocal master equation into dispersed time-local equations-of-motion. The validity of our approximations is discussed and we find that the non-Markovian terms have to be included for short times. While calculations of the density matrix at short times suffer from the initial value problem, a correlation function has a well defined initial state. The resulting formula for the non-Markovian correlation function has a simple structure and is as convenient in its application as the conventional quantum regression theorem for the Markovian case. For illustrations, we apply our method to investigate the spectrum of the current fluctuations of interacting quantum dots contacted with two electrodes. The corresponding non-Markovian characteristics are demonstrated.Comment: 11 pages, 5 figure

    Pulse-controlled quantum gate sequences on a strongly coupled qubit chain

    Full text link
    We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits with XX type interactions, which is capable of dynamically suppressing any coupling in the chain by applying sequences of local pulses to the individual qubits. We demonstrate that high-fidelity single- and two-qubit gates can be achieved by this procedure and that sequences of gates can be implemented by this pulse control alone. We discuss the applicability and physical limitations of our model specifically for strongly coupled superconducting flux qubits. Since dynamically modifying the couplings between flux qubits is challenging, they are a natural candidate for our approach.Comment: 10 pages, 7 figure
    • …
    corecore